# Assessment of Automotive RADAR SIL Data Validity by Correlation Methods

Rajesh R\*<sup>1</sup>, Aravindh G\*\*<sup>2</sup>, Ramya H R\*<sup>3</sup> and Sindhura B\*<sup>4</sup> \*Ramaiah Institute of Technology (RIT), Bangalore, India <sup>1</sup>reddyarjesh452@gmail.com <sup>3</sup>ramya\_hr@msrit.edu <sup>4</sup>sindhu88reddy@gmail.com \*\*Delphi Automotive Systems, Bangalore, India <sup>2</sup>aravindh.g@delphi.com

Abstract: As world is heading towards automation, performances required to satisfy standards and market needs are also increasing drastically. In this scenario, validation of obtained data via simulation plays a vital role to verify correctness of system during design cycles. To cater these needs, we present in this paper about the assessment of automatic RAdio Detection And Ranging (RADAR) Software-In-the-Loop (SIL) data validity by correlation methods. Hence we place automotive RADAR on various locations of car and detect vehicular information and thus obtained data is transmitted to Electronic Control Units (ECUs). ECU in turn takes appropriate actions on data to provoke active safety module through the SIL logins. Our aim is to prove that the real world data and the re-simulated data at the SIL output are fully correlated. Multivariable normalized Euclidean distance approach is utilized to determine whether any two targets are correlated using Microsoft's Visual Basics for Applications (VBA) Integrated Development Environment (IDE).

Keywords: Active safety, Automotive RADAR, Controller Area Network (CAN), ECUs, , Euclidean distance, Flex Ray, SIL.

# Introduction

In the last few years, need for automation is increasing in every aspect of life, be it home automation, car automation etc. Hence safety becomes the highest priority in designing any automated system. In early days of automation, Advance Driver Assisted Systems (ADAS) were limited to high end luxury cars but now, the demand for quality, services, efficiency, productivity, safety is the need of the hour even in low economy cars too. Majority of the ADAS features are implemented by placing sensors like automated RADARs in rear and front end of the cars. The physical world data collected by various set of sensors is stored in ECUs [1]. These sensor data have to be processed through various ECU cores and respective feature function has to be activated. But with this approach, debugging becomes highly complex, increases the time-to-market and also incurs huge cost and man power. To overcome these issues many tools were developed which reduces the testing phase. One such robust software tool is SIL, which is cost effective and possess high degree of flexibility and as well used in designing and testing phases. SIL has the features of simulator with fidelity of hardware emulator. It helps in model validation and also links test-bed efforts with simulation [2]. In this paper we access the physical data obtained from various RADARs as real world data and feed it through SIL. The data received at the output of SIL is called re-simulated data. Our aim is to compare these simulated (also known Vehicle logs) and re-simulated data, hence determine the correlation between them. We compare the corresponding Comma Separated Values (\*.CSV) of vehicle log data and re-simulated data in VBA by coding specific script using normalized Euclidean distance metric approach [3].

This paper includes: Section II contains the details about of SIL architecture, section III details the validity techniques used for comparing simulated and re-simulated data using VBS and Euclidean distance metric. Section IV explains the algorithms related to RADAR SIL data validity. Section V discusses the simulated results related to comparisons of logins. Section VI concludes the work by throwing light on future scope.

# **A Technological Architecture of SIL**

The architecture for SIL is as depicted in Fig 1.

There are three main divisions in the architecture

- Embedded Library
- Physical Layer Protocols (CAN, Flex Ray, Ethernet)
- Calibrations



Fig 1: Standard SIL Architecture

### **Embedded Library**

It is a multicore controller. Specifically, it has three cores in which each core is dedicated to a particular task. The cores are named as core zero, core one and core two. Core zero is the initial core which accepts the physical world data carried by CAN and/or Flex Ray and/or Ethernet. Next, core one does all the processing that needs to be done to the signal such as detections and as well generates tracks based on pre-set thresholds. Last, core two takes actions such as to provoke the respective feature function like Cross Talk Alert (CTA), Reverse Cross Talk Alert (RCTA) etc. based on the data obtained from core one.

#### **Physical Layer Protocols**

The physical world data is collected from various sensor sources within the car and has to be transmitted to the embedded library via general and/or specific protocols. Here for assessment of RADAR SIL data we use any of the three standard protocols like CAN, Flex Ray and Ethernet. Each of these protocols carries different data in different formats.

1) CAN : It is the standard bus specially utilized in vehicular communication. CAN bus collect the sensor information and transmits it to ECUs. Based on the obtained data various ECUs signal one another to take certain safety measures/actions. To emulate this behavior in non-real environment, we use Vector CANoe tool. Vector CANoe is one of the robust Universal development tools for CAN bus systems which help in observing, analyzing and supplementing data traffic on the bus line. CAN Access Programming Language, (CAPL) makes it possible to program the CANalyzer/CANoe for developer-Specific applications that use the CAN protocol.

2) Flex Ray: This is another bus standard developed for automobile manufacturers and suppliers, which are high speed, fault tolerant and reliable means of communication. Flex Ray is most preferred bus while transferring crucial data from sensors to ECUs because of its high speed and this feature makes it expensive compared to CAN.

*3) Ethernet*: This is the Local Area Network (LAN) technology used to communicate between networking devices. When the sensor data need to be transferred to another network within or outside the car, then the amount of data to be aggregated and sent is very huge. So we need Ethernet cables to do the task.

# Calibration

ECU software is parameterized to such an extent that the diagnostic and control functions may be easily adapted to different system variants or vehicular models by calibrating or changing characteristic values of function algorithms, without the need to change the calculation routines every time. Hence, calibration is very crucial for vehicular performance.

# **RADAR SIL Data Validity Techniques**

This paper aims at validating the SIL framework. The aim is to prove that the real world data and the re-simulated data at the SIL output are fully correlated. Further understanding of validity technique can be done from the figure depicted in Fig 2. When the data arrives via CAN/ Flex Ray/ Ethernet sources, it would be in DVSV format and is called as simulated data or raw data. This DVSV file is not in the readable format. Hence we need to convert it into \*.CSV format. To do this conversion we code a script in SIL in prior and give input as DVSV files to convert it to \*.CSV files. The high end ECUs executes the robust algorithms stored within the embedded library and also applies various calibrations to the data and generates data at

600 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017

output of the SIL, which is called re-simulated data. This will be done for multiple iterations until the finest data is obtained as well as the appropriate feature functions are provoked in time.



Figure 2: Simplified Block Diagram of SIL

But our aim is to verify the correctness of the re-simulated data thus obtained from SIL. To do so we use VBA tool to compare simulated and re-simulated data which are in Microsoft excel sheet format (other name is \*.CSV). Microsoft's VBA tool is used to compare any two excel sheets or any Microsoft office programs. Any excel sheet has many columns and each column is made up of many rows and our task is to compare two such excel sheets means comparing two columns of same parameter in two files. As it is the comparison of columns in excel sheets belonging to simulated and re-simulated data respectively, we need a distance measuring vector to see if difference is either equal to, greater than or less than zero. For this purpose we choose Multivariable normalized Euclidean distance approach that can be utilized to determine whether any two targets are correlated.

The following rules can be used.

- Normalized Euclidean distance of multiple selected parameters must be within 2 (sigma).
- Selected parameters are range, range rate, angle and lateral offset.
- Sigma values of these parameters used for computing the normalized Euclidean distance should be as follows:
  - 1) Sigma range = 1m,
  - 2) Sigma range rate = 0.25 m/s,
  - 3) Sigma angle = one degree and
  - 4) Sigma lateral offset = one.

If the sigma values obtained are as prescribed above then both logs are correlated else not correlated if otherwise. For better understanding of validity techniques, a detail know how of VBA tool and Euclidean distance is required which is covered as sub sections.

#### **Microsoft's VBA IDE Tool**

This is a very robust software tool used to perform any event driven operation on two excel sheets. There are three main windows in VBA tool namely Editor window, Command window and Result window. Editor Window: The window is shown in figure 3.



Figure 3: VBAs' Editor Window

As it is clear from above figure that window has slot in left top corner to store the project and/or file names in their hierarchy of occurrence. In this window, we code the script on right half of the Fig 3.We have written script consisting of implementation of Euclidean distance metrics to compare the same columns of two different \*.CSV files in editor window and hence result is to obtain the difference of values which is again in \*.CSV format.

Command Window: Since our script requires to compare two \*.CSV files and produce the required results which is
to be stored in specific locations, we need to provide the link for both the files and also provide destination link to
store the final output. For this purpose, separate window is opened as shown in Fig 4 which is called command
window.

| Compare_Data.dom                                                                                                        | - Microsoft | Excel                                | 0 9           |
|-------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|---------------|
| Home Sosert PageLayout Formulas Data Raview View Developer Team                                                         |             |                                      | ê 🕑 🗅         |
| A Cut Anial - 10 - A A = = = & - Wrap Text Gen                                                                          | eni         | · N 🗰 🐺 🏞                            | E AutoSum - T |
| Goopy* B Z U * ⊞ *                                                                                                      | - 16 - 4    | A g Conditional Format Cell Incert D | Sort & Find   |
| Clobard G Fort G Allowert G                                                                                             | Number      | Formatting * as Table * Styles * *   | Cells Editing |
| Al · / fileName                                                                                                         |             |                                      |               |
| A                                                                                                                       | B           | c                                    | DEF           |
| Fieblame                                                                                                                | S.No        | Comments                             |               |
| 0 (2753) 0159), Simuland 5993, J.M., 2016/201 J.M., 36, 70 (25153), 201, 73 , 270 (cr                                   | 1           | Input Log Data                       |               |
| 0VSUOVSU_Resmulaee6SRQ_J4_20160700_U4_V4_TC105153_001_60120000SRR0_U4_20160<br>700_U4_U4_TC105153_001_6012000_73_278_cm | 2           | ReSim Data                           |               |
| C.VProjects/Excel_Reading%                                                                                              | 3           | output_path                          |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
|                                                                                                                         |             |                                      |               |
| * Data_Dutput / 2                                                                                                       |             | 0×(                                  |               |

Figure 4: Extension of Command window used to provide \*.CSV file links

• Results Window: Final window which appears after the script is made to run is called Result window shown in Fig 5.



Figure 5: Results Window in \*.CSV Format

#### Multivariable Normalized Euclidean Distance

This is the distance measuring technique between the same variable of a column of two different sheets. Here it is the columns of two excel sheets (\*.CSV files) or cal logs belonging to simulated and re-simulated data respectively which needs to be checked for extent of correlation. Euclidean distance measures the difference between two values obtained for same parameter in different scenarios[3]. The general mathematics involved for calculating distance is as shown in (1).

602 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017

$$d = \sqrt{\sum_{i=1}^{p} (v_{1i} - v_{2i})^2}$$
(1)

Where d is the Euclidean distance,  $V_{1i}$  and  $V_{2i}$  are the values in column 1 of first and second \*.CSV files respectively and p is total number of rows in each column.

# VBA Pseudo Code for Assessment of RADAR SIL Data

Algorithm for assessment of RADAR SIL is as depicted in Fig 6.

| VBA | A Pseudo Code                                                                                                                                                            |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Read file names (Vehicle_Log and Re-simulated_Log) from the Workbook to compare and open them in read mode.                                                              |
| 2.  | Open output Summary Work book to show the Euclidian_distance result<br>and Scan_Index values and open them write mode.                                                   |
| 3.  | Calculate Total Number of Rows for Log files.                                                                                                                            |
| 4.  | Compute the Euclidian_distance for objects from 1 to few.                                                                                                                |
| 5.  | If the Scan_Index of the Vehicle_Log and Re-simulated_Log are same then only compute the Euclidian_distance.                                                             |
| 6.  | If Veh_Scan < ReSim_Scan Then Scan in Vehicle log is not present in Resimulated output.                                                                                  |
| 7.  | If Veh_Scan > ReSim_Scan Then maintaining I (the row corresponds to Vehicle_Log) at same index, decrementing 1 and increment I(the row corresponds to Re-simulated_Log). |

Figure 6: Algorithm for Assessment of RADAR SIL Data

# **Simulation Results and Discussion**

Simulation results obtained from VBA are as depicted in Fig 9 through Fig 10. To get the desired results the input that is fed to VBA are the \*.CSV files of simulated and re-simulated data which is shown in Fig 7 and Fig 8 respectively.

| 2      | Cut Calibr         | - 11 -            | A' A' =   | -         | ≫- ≣Wrap T      | ext        | General     |          |                    |                         | 3- 3       | × 1111      | E AutoSum -     | 7 43          |    |
|--------|--------------------|-------------------|-----------|-----------|-----------------|------------|-------------|----------|--------------------|-------------------------|------------|-------------|-----------------|---------------|----|
| aste a | Copy -             | ru- m- .          | · A · =   |           | ER ER Merge     | a Center - | 5 - % .     | 14.22    | Condition          | nal Format Cell         | Insert Del | lete Format | Fill - So       | et & Find &   |    |
| . 9    | Format Painter     | -                 | -         |           |                 |            |             |          | Formattin          | g * as Table * Styles * |            |             | Clear Fill      | er * Select * | 1  |
| Cip    | 14 Dreoot          | Ford              | - 14      |           | Alignment       | (a.)       | Numper      | . 9      |                    | 20143                   |            | (13         | Earing          | -             | ÷  |
| _      | 8FD1 • (           | J* Dets_Rang      | ge5       |           |                 |            |             |          |                    |                         |            |             |                 |               | _  |
|        | BEG                | BEH               | BEI       | 8EJ       | BEK             | BEL        |             | BEM      |                    | BEN                     | BEO        | BEP         | BEQ             | BER           |    |
| Dets,  | _Range_Rate_Raw1 C | lets_Azimuth_Raw1 | Dets_Snr1 | Dets_Vali | Dets_Amplitude2 | Dets_Rang  | e2 Dets_Rat | nge_Rate | _Raw2 De           | ets_Azimuth_Raw2        | Dets_Snr2  | Dets_Valie  | Dets_Amplitude3 | Dets_Ran      | 10 |
| 2      | 0.8828125          | -32.74999892      | 31.5      | 1         | -5.921875       | 7.64       | 0625        |          | 0.5625             | -31.33593803            | 33         | 1           | -11.265625      | 7.773438      | 8  |
|        | -2.359375          | +25.57031238      | 23        | 1         | 6.703125        | 7.789      | 0625        | 1        | .15625             | -33.03124903            | 39.5       | 1           | -5.953125       | 7.757813      | 1  |
|        | 2.203125           | -34.71093598      | 21.5      | 9         | -3.3515625      | 7.82       | 8125        | 1.       | 734375             | -34.54687484            | 24.5       | 1           | 9.9375          | 7.84375       | è. |
|        | -1.2265625         | -27.4921876       | 18        | 9         | -4.671875       | 7.914      | 0625        | -1.      | 484375             | -27.35156254            | 18.5       | 9           | -0.9453125      | 7.789063      | 8  |
|        | 2.515625           | +35.04687542      | 26        | 1         | -4.328125       | 7.882      | 8125        | 2        | 2.09375            | -35.04687542            | 25.5       | 1           | 11.9609375      | 7.90625       | 5  |
|        | -0.078125          | -29.49218652      | 31.5      | 1         | 0.71875         | 7.9        | 1875        | 1        | . 78125            | -34.16406323            | 40.5       | 1           | 6.3984375       | 7.976563      | 5  |
|        | 2.0390625          | -33.61718706      | 33        | 1         | 5.765625        | 8.01       | 5625        | 1.7      | 265625             | -33.46874997            | 38.5       | 9           | -8.3828125      | 8.046875      | 1  |
| -      | -1.15625           | -27.62500063      | 22.5      | 9         | -10.2109375     | 7.992      | 1875        | 2.1      | 015625             | -33.68750044            | 24.5       | 1           | 1.171875        | 8.023438      | 1  |
| -      | 1.65625            | -33.18749986      | 39        | 1         | -4.703125       | 14.64      | 2623        | -6.5     | 859375             | -17.03124916            | 33         | 1           | -6.7265625      | 14.45313      | 5  |
| -      | -4.375             | -21.95312445      | 34        | 1         | -4.90625        | 14.5       | 3125        | 3        | .84375             | -41.27343638            | 28         | 1           | -3.1796875      | 16.125        | 4  |
|        | -2.0390625         | -26.5078122       | 29.5      | 1         | -5.1484375      | 14.835     | 9375        | 7.9      | 765625             | -46.21874947            | 28         | 1           | -4.8515625      | 15.55469      | 4  |
| -      | 0.4453125          | -31.90624858      | 27        | 9         | -8.609375       | 14.29      | 6875        |          | 0.125              | -30.71874847            | 24         | 1           | -6.875          | 15.23438      | 1  |
| -      | 2.765625           | +35.38281145      | 27.5      | 1         | -3.5546875      | 15.648     | 4375        | 11.9     | 296875             | -53.49218718            | 28         | 0           | 0               | . 0           | 1  |
|        | -3.515625          | -23.41406264      | 26        | 1         | -9.078125       | 14.51      | 5625        | -9       | 5.21875            | -20.14062448            | 27         | 1           | -5.0546875      | 14.42188      | 4  |
|        | -2.623             | -23.17107301      | 21        |           | -3.0020123      | 14.075     | 1123        | 7.0      | 203123             | -43.26362303            | 20         |             | -4.7570125      | 10.07070      | ÷  |
|        | -0.6328123         | -23.36710722      | 31.5      |           | -0.3046875      | 14.0       | 4373        | -0.8     | 313623             | -20.71074355            | 32         | 1           | +2.630623       | 13.23430      | 1  |
|        | 1.890625           | -34.37499995      | 23        | 1         | -3.13673        | 14.835     | 9375        | 4.7      | 7.90625<br>6701.05 | -13.57031203            | 33.5       | 1           |                 | 16 2124       | ŝ  |
|        | -3.71073           | -10.0373747       | 23.5      | ,         | -3.3704373      | 14.370     | 4373        |          | 021075             | -30.70306034            | 20.0       |             | -5.73           | 10.3123       | 1  |
| -      | -3.203125          | -23.07433367      | 23.5      |           | -6.2263625      | 14.333     | 7373        | -3,4     | 921075             | -23.23607330            | 26.5       | , ,         | -4.23123        | 14.000394     | ŝ  |
| -      | 1.0570105          | ·28.17187503      | 27        | 9         | -0.3303370      | 14.757     | 123         | 0.6      | 010620             | -46.04687351            | 24.5       | 1           | -6.763623       | 15.125        | j. |
| -      | 1.2370123          | -33.40074777      | 20        |           | -7.70023        | 14.727     | 1073        | 10       | 040073             | 17 033 3 4017           | 23         |             | < 01 00 C 00    | 14.70/04      | 1  |
|        | -1-2421073         | -27.76362370      | 23.3      |           | -4.0010020      | 14.470     | 1943        | -0.3     | 234375             | -17.03124310            | 34         |             | -0.7140023      | 15 49.421     | ŝ  |
|        | 1 0.4376           | -22.00747730      | 20        |           | .7 7431076      | 14140      | 4376        | - 4,     | 1 6076             | -22.0130241             | 20         |             | -5.1790973      | 14 6 40.41    | ŝ  |
|        | 0.6952125          | -20.00710772      | 24.5      | 1         | -9.1796075      | 14.140     | 4373        | .5.4     | 452125             | -19 156 24907           | 22         | 1           | -3.3671673      | 14.04044      | à  |
|        | .7125              | -15 65625012      | 20.0      |           | -A 640625       | 14.1       | 66.25       | -7.4     | 2 9275             | -15.13014707            | 26.6       |             | .4 1052125      | 16 691 94     | â  |
| -      | 5 2890625          | -40 20312583      | 20        | 1         | -9.078125       | 14.09      | 625         | .9.2     | 421875             | .11 33593775            | 20.0       | 1           | .4 53125        | 15.91.400     | ŝ  |
|        | -2 4296975         | -40.70312303      | 20        | 1         | -5.0202125      | 15.2       | 1975        | -11.7    | 765675             | -5 22012512             | 27         | 0           |                 | 10.51400      | ŝ  |
|        | .0.066975          | -29 79697447      | 20.5      |           | -0.2421075      | 14 002     | 1 25        |          | 765675             | -9.97/562705            | 24.6       | 0           |                 |               | ŝ  |
|        | 0.522.6275         | -20.97656107      | 29.5      |           | -0.2422073      | 14 507     | 11.25       | .7       | 703023             | -14 04007404            | 2.4        | 1           | .4 9276         | 15 2107       | ŝ  |
|        | -5.5070125         | -19 15624907      | 26.5      | 1         | -4.0059375      | 16.0       | 1125        | -14      | 15625              | 0.156249995             | 32.5       | 1           | .12 2202125     | 16 26561      | í  |
|        | -0.6329125         | .29.23437419      | 20.3      | 1         | .9.734376       | 12.02      | 1875        | .1.4     | 921875             | .27.2187.4955           | 27 5       | 1           | .3.0390434      | 15,09314      | į  |
|        | .0.7578125         | .29.79697442      | 27        | 1         | .14 359375      | 14 273     | 1375        | .23      | 515625             | 24 9921881              | 26         | 1           | .7.7421875      | 14 97656      | ŝ  |
|        | -22.671875         | 22.5703123        | 26        | 1         | -6.875          | 13.92      | 1875        | 1.       | 671875             | -34.00781241            | 28.5       | 1           | -8.984375       | 13.94531      | i  |
| -      | -21.53125          | 19.03906181       | 36.5      | 1         | -6.8359375      | 10.52      | 4.25        | -6.      | 546875             | -16.54687434            | 20.5       | 1           | -4 703125       | 15.54685      | į. |
| -      | 4 3046875          | -21.62500046      | 30.5      | 1         | -7.7421875      | 15.632     | 125         | .12.9    | 921875             | -2.757812461            | 27         | 0           |                 | (             | ĵ. |
|        |                    |                   | 00.0      |           |                 |            |             |          |                    |                         | 47         | v           |                 |               | 20 |

Figure 7: \*. CSV File for Simulated Data

|      | A COL         | Calibri     | - 11 - A A 3        | = = >-           | Wrap Text   |         | General      |          |             |                |           | ×      |          | E AutoSum | · 27    | a h       |    |
|------|---------------|-------------|---------------------|------------------|-------------|---------|--------------|----------|-------------|----------------|-----------|--------|----------|-----------|---------|-----------|----|
| aste | Copy -        | BZU         | · · · · · · · ·     |                  | Merge & C   | enter - | 5 - % ,      | 24 .23   | Conditional | Format Cell    | Insert    | Delete | Format   | Fill *    | Sort &  | Find &    |    |
|      | linhoard G    |             | Fort 5              | Alignme          | nt          | 5       | Number       |          | Formatting  | Shies          |           | Cells  |          | 2         | diting  | Select .  |    |
| _    | Al            | • (n        | fr Secto ctr        | Pargente         |             |         | THEFT        |          |             | 7447           |           | (410)  |          |           | or only | _         | -  |
| 1    | BNT           | BNU         | BNV                 | BNW              | BNX         | BNY     | BN/Z         |          | BOA         | BOB            |           |        | BOC      | Br        | 00      | BOE       |    |
| De   | ts Amplitude1 | Dets Rangel | Dets Range Rate Raw | Dets Azimuth Raw | 1 Dets Snr1 | Dets Va | li-Dets Ampl | itude2 D | ets Range2  | Dets Range Ral | te Raw2   | Dets   | Azimuth  | Raw2 Dets | Snr2Dr  | ets Valie | D. |
|      | -7.703125     | 7.7109375   | 0.8828125           | -32,7499989      | 2 31.5      |         | 1 -5.        | 921875   | 7.640625    |                | 0.5625    | 5      | -31.3355 | 3803      | 33      | 1         | Ê. |
|      | -10.15625     | 8.046875    | -2.359375           | -25.5703123      | 8 23        |         | 1 6.         | 703125   | 7.7890625   |                | 1.15625   | 5      | -33.0312 | 24903     | 39.5    | 1         | Π. |
|      | -6.296875     | 7.8515625   | 2.203125            | -34.7109359      | 8 21.5      |         | 9 -3.3       | \$15625  | 7.828125    |                | 1.73437   | 5      | -34.5468 | 37484     | 24.5    | 1         |    |
|      | -5.1796875    | 7.921875    | -1.2265625          | -27.492187       | 6 18        |         | 9 -4         | 571875   | 7.9140625   |                | 1.48437   | 5      | -27.3515 | 36254     | 18.5    | 9         | Π. |
|      | -4.0859375    | 7.875       | 2.515625            | -35.0468754      | 2 26        |         | 1 -4         | 328125   | 7.8828125   |                | 2.09375   | 5      | -35.0468 | 37542     | 25.5    | 1         | 1  |
|      | -8.0390625    | 8.015625    | -0.078125           | -29.4921865      | 2 31.5      |         | 1 0          | 71875    | 7.96875     |                | 1.78125   | 5      | -34.1640 | 36323     | 40.5    | 1         | 6  |
|      | 0.9296875     | 8.015625    | 2.0390625           | -33.6171870      | 6 33        |         | 1 5.         | 765625   | 8.015625    | 1              | .7265625  | 5      | -33.4687 | 74997     | 38.5    | 9         | 1  |
|      | 1.4765625     | 8.1171875   | 1.65625             | -33.1874998      | 6 39        |         | 1 -4.        | 703125   | 14.640625   | -6             | .5859375  | 5      | -17.0312 | 24916     | 33      | 1         | 6  |
|      | -2.8203125    | 14.4609375  | -4.375              | -21.9531244      | 5 34        |         | 1 -4         | 90625    | 14.53125    |                | 5.84375   | 5      | -41.2734 | 43638     | 28      | 1         | 6  |
|      | -6.765625     | 14.4140625  | -2.0390625          | -26.507812       | 2 29.5      |         | 1 -5.1       | 484375   | 14.8359375  | 7              | .9765625  | 5      | -46.2187 | 74947     | 28      | 1         | 6  |
|      | -6.546875     | 14.25       | 0.4453125           | -31.9062485      | 8 27        |         | 9 -8.        | 509375   | 14.296875   |                | 0.125     | 5      | -30.7187 | 74847     | 24      | 1         |    |
|      | -8.25         | 14.3828125  | 2.765625            | -35.3828114      | 5 27.5      |         | 1 -3.5       | 546875   | 15.6484375  | 11             | .9296875  | 5      | -53.4921 | 18718     | 28      | 0         |    |
|      | -10.15625     | 14.4453125  | -3.515625           | -23.4140626      | 4 26        |         | 1 -9.        | 078125   | 14.515625   |                | -5.2187   | 5      | -20.1406 | 52448     | 27      | 1         | 6  |
|      | -9.421875     | 14.34375    | -2.625              | -25.1718750      | 1 27        |         | 1 -5.8       | 328125   | 14.6953125  | 7              | .3203125  | 5      | -45.2656 | 52389     | 26      | 1         | 6  |
|      | -5.59375      | 14.3125     | -0.6328125          | -29.3671872      | 2 31.5      |         | 1 -5.3       | 046875   | 14.34375    | -0             | .8515625  | 5      | -28.7187 | 74955     | 32      | 1         |    |
|      | -6.765625     | 14.3046875  | 1.890625            | -34.3749999      | 6 29        |         | 1 -3         | 15625    | 14.8359375  |                | -7.90625  | 5      | -13.5703 | 31205     | 33.5    | 0         |    |
|      | -5.953125     | 14.484375   | -5.71875            | -18.859374       | 9 25.5      |         | 9 -5.3       | 984375   | 14.3984375  | 4              | 1.2578125 | 5      | -38.7890 | 6094      | 23.5    | 1         |    |
|      | -8.890625     | 14.3359375  | -3.203125           | -23.8749996      | 7 23.5      |         | 1 -6.2       | 265625   | 14.3359375  | -3             | .4921875  | 5      | -23.2968 | 37538     | 26.5    | 9         |    |
|      | -6.875        | 14.28125    | -1                  | -28.1718750      | 9 27        |         | 9 -5.3       | 359375   | 14.7578125  | 8              | .6015625  | 5      | -48.0468 | 37351     | 24.5    | 1         |    |
|      | -9.078125     | 14.15625    | 1.2578125           | -33.4687499      | 7 28        |         | 1 -7         | 90625    | 14.9296875  |                | 9.046875  | 5      | -11.8593 | 37528     | 29      | 0         |    |
|      | -9.2265625    | 14.2578125  | -1.2421875          | -27.7656239      | 8 25.5      |         | 1 -4.8       | 515625   | 14.4765625  | -6             | .5234375  | 5      | -17.0312 | 14916     | 31      | 1         |    |
|      | -8.890625     | 14.375      | -3.875              | -22.6874995      | 6 26        |         | 1 -7.1       | 015625   | 14.296875   |                | 4.23437   | 5      | -22.015  | 56241     | 28      | 9         |    |
|      | -8.1640625    | 14.1171875  | -1.84375            | -26.8671877      | 2 24.5      |         | 9 -7.7       | 421875   | 14.1484375  |                | -1.6875   | 5      | -26.7500 | 00046     | 22      | 9         |    |
|      | -8.796875     | 14.1015625  | 0.6953125           | -31.5546884      | 9 28.5      |         | 1 -9.1       | 796875   | 14.3125     | -5             | .4453125  | 5      | -19.1562 | 14907     | 28      | 1         | 6  |
|      | -6.2265625    | 14.515625   | -7.125              | -15.6562501      | 2 26        |         | 1 -4.        | 540625   | 14.15625    |                | 2.9375    | 5      | -35.7343 | 37494     | 26.5    | 1         |    |
|      | -4.6171875    | 14.296875   | 5.2890625           | -40.7031258      | 3 28        |         | 1 -9.        | 078125   | 14.890625   | -9             | .2421875  | 5      | -11.3355 | 33775     | 27      | 1         |    |
|      | -10.046875    | 13.9609375  | -2.4296875          | -26.281249       | 7 24.5      |         | 1 -5.8       | 203125   | 15.34375    | -11            | .7265625  | 5      | -5.3281  | 2513      | 28      | 0         |    |
|      | -6.8359375    | 13.9765625  | -0.046875           | -29.7968744      | 2 30.5      |         | 1 -0.2       | 421875   | 14.8828125  |                | 9.765625  | 5      | -9.97656 | 52769     | 34.5    | 0         |    |
|      | -5.2109375    | 14.0703125  | -0.5234375          | -28.9765618      | 7 29.5      |         | 1 .          | 1.3125   | 14.5078125  |                | 7.703125  | 5      | -14.0468 | 37484     | 34      | 1         |    |
|      | -8.0390625    | 14.234375   | -5.5078125          | -19.1562490      | 7 26.5      |         | 1 -4.0       | 359375   | 16.03125    |                | 14.15625  | 5      | 0.15624  | 19995     | 32.5    | 1         |    |
|      | -7.453125     | 13.921875   | -0.6328125          | -29.2343741      | 9 29        |         | 1 -9.        | 734375   | 13.921875   | -1             | .4921875  | 5      | -27.2187 | 74951     | 27.5    | 1         |    |
|      | -8.4296875    | 13.9765625  | -0.7578125          | -29.7968744      | 2 27        |         | 1 -14.       | 359375   | 14.2734375  | -2             | 3.515625  | 5      | 24.992   | 1881      | 26      | 1         | į. |
|      | -14.1015625   | 13.4375     | -22.671875          | 22.570312        | 3 26        |         | 1            | -6.875   | 13.921875   |                | 1.671875  | 5      | -34.0078 | 31241     | 28.5    | 1         | į, |
|      | -7.6171875    | 12.5078125  | -21.53125           | 19.0390618       | 1 36.5      |         | 1 -6.8       | 359375   | 14.25       |                | 6.546875  | 5      | -16.5468 | 37434     | 29.5    | 1         | í, |
|      | -6.953125     | 14.0390625  | -4.3046875          | -21.6250004      | 6 30.5      |         | 1 -7.7       | 421875   | 15.6328125  | -12            | .9921875  | 5      | -2.75781 | 2461      | 27      | 0         |    |
|      | -7.3359375    | 10.859375   | -18.515625          | 10.3593752       | 3 37        |         | 1 .          | 8.5625   | 13.9296875  |                | -1.75     | 5      | -26.507  | 78122     | 27.5    | 1         | Ľ. |
|      | -7.0625       | 10.2265625  | -16.5078125         | 5.69531225       | 8 37.5      |         | 1 -4         | 571875   | 13.84375    |                | 0.5625    | 5      | -31.2265 | 36279     | 30.5    | 1         |    |
|      |               |             | the second day      |                  |             |         |              |          |             |                |           |        |          |           |         |           | -  |

Figure 8: \*.CSV File for Re-Simulated Data

The columns in the Fig 7 and Fig 8 are named as Range, range Rate, Angle and Lateral Offset respectively. The same parameters are calculated for few objects.

The values in four columns of Fig 9 and Fig 10 are obtained after applying the multivariate normalized Euclidean distance in VBA tool. As mentioned in the last section, the standard values expected to be reached by range, range rate, angle and lateral offset are as seen in results. Range is approximately one and range rate is also reaching almost one for most of the values which is acceptable. But other two parameters like angle and offset are slightly deviated from expected values for certain readings. These readings are depicted in red color to show the difference. The deviations in angle and offset can be fine-tuned to fall in the designed range by carrying out another iteration in SIL with required changes in the script.

| Photo         Contention         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clear - Sort & Find &<br>Clear - Filter - Select -<br>Editing | Q Q | Format | Cells | Insert | Cell    |                       |               |        |        |    |              |      |        |   |   |       |           |           |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----|--------|-------|--------|---------|-----------------------|---------------|--------|--------|----|--------------|------|--------|---|---|-------|-----------|-----------|------------|-----------|
| Openand         openand         Number         Openand         Spin         Cets         Approx           A         B         C         D         E         F         G         H         J         K         M         N         Openand         Spin         Cets         Cets         Cets         F         G         H         J         K         M         N         O         P         Q           1         Range         Range         Range         K         M         N         O         P         Q           0         230998         Stytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Editing R S                                                   | Q.  |        | Cells |        |         | Format,               | Conditional F | 24 .21 | - % +  |    | rge & Center | M    | 课课     |   |   | 3 - A | • .       | B / U     | at Painter | d for     |
| Al         •         Image         Rage           Image         Rage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R S                                                           | Q   |        |       |        | voies - | to reave - a<br>bries | romatory - as | 14     | Number | 14 |              | ient | Aligne |   |   |       | Font      |           | 4          | Clipboard |
| A         B         C         D         E         F         G         H         I         J         K         L         M         N         O         P         Q           Image         Radge         Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R S                                                           | Q   |        |       |        |         |                       |               |        |        |    |              |      |        |   |   | e     | fe Rang   | (=        |            | A1        |
| 1         Darge         Particle         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <tdd< td=""> <tdd< td="">         D         <tdd< th=""><th></th><th>-</th><th></th><th>P</th><th>0</th><th>N</th><th>N</th><th>M</th><th>L</th><th>K</th><th></th><th>1</th><th>н</th><th>G</th><th></th><th>F</th><th>E</th><th>D</th><th>C</th><th>B</th><th>A</th></tdd<></tdd<></tdd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | -   |        | P     | 0      | N       | N                     | M             | L      | K      |    | 1            | н    | G      |   | F | E     | D         | C         | B          | A         |
| 2 Balane Barra Bar                                                                                                                                           |                                                               |     |        |       |        | -       |                       |               |        |        |    |              |      |        | _ |   |       | Amplitude | Azimuth I | Range Ra   | ange      |
| 0         0.00000         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         0.00000         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.23571   | 0.87171   | 0.173985   | 1.287988  |
| 4         0.4422         0.0512         0.4543         0.2764         0.4201           0.16464         0.0507         0.9314         0.2007         0.9314         0.4201         0.7764           0.16464         0.0507         0.9314         0.2007         0.9314         0.4201         0.7764           0.11456         0.4402         0.9324         0.9302         0.9764         0.9764           0.11456         0.4402         0.9323         0.9764         0.9764         0.9764           0.44950         0.4002         0.9704         0.9202         0.9764         0.9764           0.49950         0.0012         0.9764         0.9904         0.9904         0.9904         0.9904           0.91747         0.9202         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904         0.9904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.266338  | 0.886923  | 0.237168   | 0.314609  |
| 0         6.96424         0.96434         0.96439         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.96449         0.964494         0.96449         0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.278543  | 0.944953  | 0.315917   | 0.342652  |
| 0.3930         0.4325         0.43243         0.43214         0.43243         0.43243         0.43243         0.43243         0.43243         0.43243         0.43243         0.43243         0.43243         0.43243         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.44343         0.4444         0.4444         0.4444         0.4444         0.4444         0.44443         0.44443         0.44443         0.44443         0.4444         0.4444         0.4444         0.4444         0.4444         0.4444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.44444         0.444444         0.444444         0.444444<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.279803  | 0.946213  | 0.366704   | 0.366474  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.283117  | 0.99247   | 0.420225   | 0.39014   |
| 0         0.4435         0.0001         0.1111         0.0001         0.1111         0.0001         0.1111         0.0001         0.1111         0.0001         0.1111         0.0001         0.1111         0.0001         0.1111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0111         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001         0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.27945   | 0.954637  | 0.444309   | 0.411454  |
| No.2012         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00142         0.00144         0.00142         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144         0.00144 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.284452</td><td>0.979477</td><td>0.460691</td><td>0.434355</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.284452  | 0.979477  | 0.460691   | 0.434355  |
| 0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000           0         0.00000         0.00000         0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.278321  | 1.032639  | 0.484212   | 0.455076  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.270855  | 1.035766  | 0.495129   | 0.4821    |
| 0         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.00000         0.0000         0.0000           0.000000         0.0000         0.0000           0.000000         0.00000         0.0000           0.000000         0.00000         0.00000           0.000000         0.00000         0.00000           0.000000         0.00000         0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.266727  | 1.036207  | 0.506523   | 1 61 7061 |
| 4         0.55712         0.23933         0.23987           6         0.57114         0.53927         0.2395         0.24911           6         0.57114         0.53927         0.2395         0.24111           6         0.57114         0.25978         0.24111         0.25978           6         0.57147         0.25978         0.2412         0.25978           6         0.57147         0.25978         0.2412         0.25978           6         0.57147         0.25978         0.2412         0.25978           6         0.57571         0.55955         0.2412         0.2010           6         0.57571         0.55955         0.2412         0.2010           6         0.57571         0.55955         0.2412         0.2010           6         0.55711         0.2010         0.2010         0.2010           6         0.55711         0.5591         0.2010         0.2010           7         0.52955         0.55712         0.2010         0.2010           8         0.55921         0.55912         0.2010         0.2010           8         0.57924         0.57924         0.57924         0.57924 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.259326</td><td></td><td>0.522454</td><td>535903</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.259326  |           | 0.522454   | 535903    |
| 647934       0.5101       0.5044         667954       0.5101       0.5044         667954       0.5101       0.5044         667954       0.5101       0.5044         667954       0.5101       0.5044         667954       0.5101       0.5044         667954       0.5101       0.5034         667954       0.5101       0.5034         667954       0.5051       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5034         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052         677954       0.5052       0.5052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.250858  | 1.10636   | 0.530123   | 554724    |
| 6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.243111  | 1.124709  | 0.536223   | 573198    |
| 0.07940         0.05441         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444         0.02444 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.2336.44</td><td>1.116179</td><td>0.533309</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.2336.44 | 1.116179  | 0.533309   |           |
| 0.4244         0.5950         1.555         0.2524           0.45781         0.5971         1.586         0.21241           0.45787         0.5971         1.586         0.21241           0.45787         0.5971         1.586         0.21241           0.45787         0.5971         1.586         0.2134           0.45787         0.5971         1.586         0.2134           0.45787         0.5971         1.586         0.2134           0.45787         0.5971         1.586         0.2134           0.45787         0.5971         0.5086         0.2144           0.47184         0.5971         0.5086         0.2144           0.771841         0.5972         0.1997         0.1997           0.771841         0.5972         0.1997         0.1997           0.795441         0.5972         0.1997         0.1997           0.49797         0.11467         0.1997         0.1997           0.497941         0.5974         0.1997         0.1997           0.49795         0.5964         1.1197         0.1997           0.49797         0.11987         0.1997         0.1997           0.49796         0.5974         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.225708  | 1.147398  | 0.551412   | .607969   |
| 0.57878         0.59787         0.59787         0.59787           0.67587         0.59785         0.59787         0.59787           0.67587         0.59785         0.59787         0.59787           0.67587         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.71581         0.59787         0.59787         0.59787           0.65787         0.59787         0.59787         0.59787           0.65787         0.59787         0.59787         0.59787           0.65787         0.59787         0.59787         0.59787           0.65978         0.59787         0.59787         0.59787           0.65978         0.59787         0.59787         0.59787           0.65978         0.59787         0.59787         0.59787           0.65978         0.59787         0.59797         0.59787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.226232  | 1.15969   | 0.553058   | 0.62644   |
| 685547         0.50751         1.5286         0.21074           687592         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687593         0.5295         0.5295         0.5295           687594         0.5295         0.5295         0.5295           687594         0.5295         0.5295         0.5295           687595         0.53964         0.5396         0.5396           688295         0.5396         0.5396         0.5396           688295         0.5396         0.5396         0.5495           6889410         0.5396         0.5396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.219263  | 1.100774  | 0.558762   | 0.637889  |
| 6.47571         0.5295         1.5211         0.5046           6.47581         0.5584         0.5584         0.5584         0.5584           6.71281         0.5584         0.5584         0.5584         0.5584           6.71281         0.5584         0.5594         0.5596         0.5596           6.71284         0.5586         0.5599         0.5599         0.5579           6.71284         0.5597         0.5579         0.5579         0.5579           6.71284         0.5597         0.5579         0.5579         0.5579           6.75144         0.5597         0.5579         0.5579         0.5579           6.85974         0.5798         0.51879         0.5579           6.85974         0.5798         0.51879         0.51879           6.85974         0.5798         0.5186         0.51879           6.85974         0.5798         0.5186         0.5186           6.85974         0.5798         0.5186         0.5186           6.85974         0.5798         0.5186         0.5186           6.85974         0.5798         0.5186         0.5186           6.85974         0.5798         0.5186         0.5186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.210766  | 1.14568   | 0.555707   | 0.655447  |
| 0.45324         0.55124         0.52124         0.52144         0.55124         0.52144         0.55124         0.52144         0.55124         0.52144         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124         0.55124 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.206386</td><td>1.181114</td><td>0.562555</td><td>0.675571</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.206386  | 1.181114  | 0.562555   | 0.675571  |
| 0.71201 0.75458 1.2000 0.20097<br>0.72501 0.57458 1.2000 0.20097<br>0.72501 0.57458 1.2000 0.20097<br>0.72529 0.57458 1.2000 0.2007<br>0.72529 0.57458 1.2000 0.2007<br>0.72529 0.57458 1.2000 0.2007<br>0.72549 0.57050 1.2012 0.2007<br>0.72549 0.57050 1.2012 0.2007<br>0.72549 0.57050 1.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2007<br>0.72549 0.5705 0.2012 0.2012 0.2012 0.2007<br>0.7259 0.5705 0.2012 0.2012 0.2012 0.2007<br>0.7259 0.5705 0.2012 0.2012 0.2012 0.2007<br>0.7505 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0.2012 0. |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.20633   | 1.162116  | 0.563122   | 0.692681  |
| NY 201     50 / Wei     50 / Wei       NY 204     100 / Wei<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.201887  | 1.20768   | 0.566567   | 0.711831  |
| 0.74574 0.55676 1.2770 0.25701<br>0.75724 0.55676 1.2770 0.25701<br>0.75724 0.55592 1.2210 0.25751<br>0.757244 0.55592 1.2210 0.25751<br>0.857546 0.55644 1.2120 0.2575<br>0.857546 0.55744 1.2120 0.2577<br>0.85725 0.55644 1.2120 0.2575<br>0.85725 0.55745 0.2575 0.2594<br>0.85755 0.2575 1.2580 0.2586<br>0.85660 0.2575 0.2578 0.2586<br>0.85660 0.2575 0.2578 0.2586<br>0.85660 0.2575 0.2578 0.2586<br>0.85755 0.2578 0.2586 0.2586<br>0.85755 0.2578 0.2586 0.2586<br>0.9775 0.2578 0.2588 0.2586<br>0.9775 0.2578 0.2588 0.2588 0.2586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.198809  |           | 0.573946   | 0.732501  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.19591   | 1.160596  | 0.566262   | 0.745451  |
| 0.75444         0.5592         0.1017           0.75444         0.5792         0.10276           0.80297         0.57944         0.5792           0.80297         0.57944         0.5792           0.80297         0.57944         0.5792           0.80297         0.57944         0.5792           0.80297         0.57944         0.5792           0.80297         0.57954         0.5993           0.80297         0.57954         0.5993           0.80297         0.57954         0.59954           0.80297         0.57954         0.59954           0.80298         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.80299         0.59954         0.59954           0.59954         0.59954         0.59954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.192821  | 1.170713  | 0.568639   | 0.763243  |
| 869797         07964         0.13075           833277         0.57850         0.1305           843111         0.57842         0.1405           0.49411         0.57842         0.1004           0.49411         0.57842         0.1004           0.49412         0.57842         0.1004           0.49412         0.57842         0.1004           0.49424         0.97842         0.1004           0.49444         0.97842         0.1004           0.49444         0.97842         0.1004           0.49444         0.97842         0.1004           0.49444         0.97842         0.1004           0.49444         0.97842         0.1004           0.49444         0.97844         0.1004           0.97944         0.97844         0.1004           0.97944         0.97844         0.1004           0.97944         0.9794         0.1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.100779  | 1 101074  | 0.569329   | 705.43.4  |
| 8.822979 0.579500 12100 0.18295 0.18295 0.059720 0.18195 0.059720 0.579720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.279720 0.2797200                                                                                                                                           |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.182378  |           | 0.570444   | 809796    |
| 0.889/18         0.596/18         0.596/19           0.889/19         0.596/19         0.596/19           0.889/19         0.596/19         0.596/19           0.889/19         0.596/19         0.596/19           0.889/19         0.596/19         0.596/19           0.899/19         0.596/19         0.596/19           0.899/19         0.596/19         0.596/19           0.899/19         0.596/19         0.596/19           0.999/14         0.596/19         0.166/19           0.999/14         0.596/19         0.166/19           0.999/14         0.596/19         0.166/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.18156   | 1 18268   | 0.578504   | 832873    |
| 8.853243 0.557340 2.14450 0.130568<br>0.866622 0.557340 2.14459<br>0.875956 0.55561 1.21458 0.46439<br>0.895556 0.55750 1.21458 0.46439<br>0.895556 0.55550 1.14649 0.45930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.18347   |           | 0.574722   | 842811    |
| 0.86642         0.85942         0.8643           0.87859         0.8643         0.8742           0.84454         0.8742         0.8742           0.84454         0.8742         0.8742           0.84555         0.8742         0.8742           0.84554         0.8742         0.8742           0.8455         0.8742         0.8742           0.9254         0.8752         0.1483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.180668  | 1 144409  | 0.557385   | 0.859243  |
| 8/87895 9/5648 8/15148 9/16419<br>0/89454 - 0.5474 1/12/27 0.772/57<br>0/87574 - 0.57570 1/14/27 0.16469<br>0/82296 0.545550 1/11448 9/161066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.170091  | 1.137157  | 0.559118   | . 860602  |
| 48948. 0551 500 012287<br>835516 05520 01200 01265<br>9255 05555 0120 01268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.164619  | 1.153446  | 0.55648    | .875095   |
| 0.965766 0.552789 0.144495 0.16660<br>0.92236 0.545555 0.11448 0.163066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.172357  | 1.122687  | 0.5474     | 0.894163  |
| - 4.90226 - 4.54555 - 111126 - 0.16006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.16683   | 1.141455  | 0.552788   | 0.905766  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.163086  | 1.113416  | 0.545555   | 0.92236   |
| ( 0.926105 0.534403 1.057439 0.158112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |     |        |       |        |         |                       |               |        |        |    |              |      |        |   |   |       | 0.158112  | 1.097498  | 0.534403   | 0.926106  |

Figure 9: Values obtained after applying Euclidean Distance

#### 604 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017



Figure 10: Values obtained after applying Euclidean Distance

# **Conclusion and Future Scope**

The assessment of RADAR SIL data using VBA tool is done successfully using Multivariate Normalized Euclidean Distance. We obtained high level of correlation between simulated and re-simulated data in terms of range, range rate, angle and lateral offset. As a part of future scope we intend to obtain perfect correlation between data and flash it onto the hardware and test it in real world scenario.

# References

- R Jihas Khan, "Using ADAS Sensors in Implementation of Novel Automotive Features for Increased Safety and Guidance," in Signal Processing and Integrated Networks(SPIN), 2016 IEEE International Conference, Noida, India, pp. 753-758, 2016.
- [2] Stephanie Demers, Praveen Gopalakrishnan and Latha Kant, "A Generic Solution to Software-in-the-Loop,"in MILCOMM, IEEE, USA, pp. 1-6, Feb 2008.
- [3] Pbarrett. (2005, September) " Euclidean Distance Raw, Normalised and Double-Sclaed Co-efficients," [Online]. Available: http://www.pbarrett.net/techpapers/euclid.pdf.
- [4] Claudio Bonivento, Matteo cacciari, Andrea Paoli and Matteo Sartini, "Rapid Prototyping of Automated manufacturing Systems by Software-in-the-Loop," in Chinese Control and Decision Conference (CCDC), 2011 IEEE, pp. 3968-3973, Aug 2011.
- [5] Daniela Meola, Luigi Iannelli and Luigi Gliemo, "Flight Control System for Small-Size unmanned Aerial Vehicles: Design and Software-In-the-Loop Validation," in Control and Automation (MED), 2013 IEEE 21st Mediterranean Confernce, Greece, pp.357-362 , June 2013.
- [6] Juergen Dickmann, Jens Klappstein et.al., "Present Research Activities and future requirements on Automotive RADAR from a Car Manufacture's Point of View," in Microwaves for Intelligent Mobility, 2015 IEEE MTT-S International Confernce, Heidelberg, Germany, pp. 1-4, June 2015.
- [7] Agilent Technologies (2007, February) " VBA Programmer's Guide," [Online]. Available: http://www.testunlimited.com/pdf/an/E5061-90033.pdf.
- [8] Jayant Y.Hande, Milind Khanapurkar et.al., "Approach for VHDL and FPGA Implementation of Communication Controller of Flex-Ray Controller," in ICETET, Second IEEE International Conference, Nagpur, India, pp. 397-401, Jan 2010.